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Abstract. We examine the influence of thermal noise on several non-classical properties of
squeezed number states. In order to evaluate arbitrary-order moments of both amplitude and
quadrature operators of the superposition, we use a normal-ordering technique based on McCoy’s
theorem. Our analytical results are compact formulae involving Gauss hypergeometric functions.

We find that the thermal mean occupancy sufficient to destroy squeezing to any order is less
than 1

2. Other non-classical features of a squeezed number state, such as pairwise oscillations
in the photon number distribution, sub-Poissonian statistics and amplitude-squared squeezing
disappear completely above this threshold.

1. Introduction

One of the most striking problems concerning the non-classical properties of the
electromagnetic field states is the extent to which they survive in the presence of noise
and losses. For both squeezed states and quantum-mechanical superpositions of coherent
states, the influence of losses [1–5] or thermal noise [6–9] on the oscillations in the photon-
number distribution was extensively studied. It was found that small amounts of thermal
noise destroy the oscillatory behaviour of the distribution. By interference-in-phase-space
methods, a rather drastically restrictive condition on the thermal mean occupancy still
maintaining the oscillations, has recently been given in the case of a squeezed coherent
state (SCS) [9].

The aim of the present paper is to investigate the influence of thermal noise on the higher-
order squeezing properties of a fundamental quantum state, the squeezed number state (SNS)
[10–12]. The remarkable non-classical properties of this state, especially when analysing
higher-order squeezing have recently received a good deal of attention [11, 12]. It was
found that squeezing to different orders sets in at different values of the squeeze parameter.
This fact indicates the existence of intrinsic higher-order squeezing, a concept introduced
by Hong and Mandel [13]. The normally ordered moments of the quadrature operators
were found to be oscillatory-in-sign functions with respect to the squeeze parameter [12].
Therefore, we analyse in the following the preservation of these properties in the presence of
thermal noise. In section 2 we study the single-mode superposition of an arbitrary radiation
field with a thermal one. General formulae are given here for both the density matrix and
correlation functions. In section 3 we specialize them to the case of a single-mode field
in a SNS. The resulting field is in a mixed state, hereafter calledthermal squeezed number
state (TSNS). We give first the density matrix of this superposition in the Fock basis.
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Plots of the photon number distribution for several values of thermal mean occupancy are
presented. Then, by direct differentiation of the normally ordered CF of a TSNS, we obtain
the correlation functions of arbitrary orders. In particular, we examine the second-order
degree of coherence and establish the influence of the thermal component of the field on
the sub-Poissonian photon statistics.

In section 4 we investigate the way thermal noise modifies the conditions for higher-
order squeezing. For the sake of completeness, we examine both quadrature squeezing as
defined by Hong and Mandel [13] and amplitude-squared squeezing as introduced by Hillery
[14].

Section 5 is a summary of our physical results. We stress also that our analytical
calculations are performed using a normal ordering technique to obtain the higher-order
moments of both amplitude and quadrature operators in terms of Gauss hypergeometric
functions. In the appendix we recall some useful properties of the hypergeometric functions
1F1 and 2F1. A remarkable summation formula is employed to get the main result in
section 4.

2. Superposition of fields

In the present work we deal with a single-mode radiation field whose amplitude operators
are denoted bya anda†. For any state of the field the CF [15] defined as the expectation
value of the Weyl’s displacement operatorD(λ) = exp(λa† − λ∗a),

χ(λ) = Tr[ρD(λ)] (2.1)

determines uniquely the density operatorρ. Indeed, the CF is the weight function in the
Weyl expansion [16] of the density operator,

ρ = 1

π

∫
d2λ χ(λ)D(−λ). (2.2)

The normally ordered CF,

χ(N )(λ) = Tr[ρeλa†
e−λ∗a] (2.3)

has the Taylor expansion

χ(N )(λ) =
∞∑
l=0

∞∑
m=0

1

l!m!
λl(−λ∗)m〈(a†)lam〉 (2.4)

from which one readily finds the correlation functions〈(a†)lam〉. Its Fourier transform is
the well known Glauber’sP -representation,

P(β) = 1

π

∫
d2λ exp(βλ∗ − β∗λ)χN(λ). (2.5)

Now, following Glauber [17], we define the superposition of the one-mode field
described by the density operatorρ1 with a thermal noise in the same mode. The density
operator of the superposition is

ρ =
∫

d2β PT (β)D(β)ρ1D
†(β) (2.6)

where

PT (β) = 1

πn̄
exp

(
−|β|2

n̄

)
(2.7)
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is Glauber’sP -representation for the thermal field with the mean occupancyn̄. equation
(2.6) can be used conveniently to get the density operator of the superposition in the Fock
basis. To this end we need the matrix elements of the Weyl’s displacement operator [18, 19]

〈k|D(β)|l〉 =
(

l!

k!

)1/2

βk−l exp

(
−|β|2

2

)
L

(k−l)
l (|β|2) (2.8)

whereL
(k−l)
l is a Laguerre polynomial, equation (A3). We employ the polar coordinates in

the integral (2.6) and are left with the relation

〈m|ρ|n〉 = 1

n̄

∑
k,l

[
m!n!

k!l!

]1/2 1

[(m − k)!] 2
〈k|ρ1|l〉δm−k,n−l

∫ ∞

0
dt exp

[
−

(
1 + 1

n̄

)
t

]
tm−k

× 1F1(−k; m − k + 1; t)1F1(−l; m − k + 1; t). (2.9)

The remaining integral is of the type (A4). After performing it we arrive at the summation

〈m|ρ|n〉 = 1

(m − n)!

[
m!

n!

]1/2
n̄n

(n̄ + 1)m

∞∑
p=0

[
(m − n + p)!

p!

]1/2 (
n̄

n̄ + 1

)p

× 2F1

(
−p, −n; m − n + 1; 1

n̄2

)
〈m − n + p|ρ1|p〉 m > n (2.10)

in which 2F1 stands for a Gauss hypergeometric function, equation (A1).
According to equation (2.4) the correlation functions〈(a†)lam〉 of the superposition

can be computed by using the normally ordered CF. To this aim we insert the Weyl
expansion (2.2) of the operatorρ1 in equation (2.6) and then use the multiplication law
of the Heisenberg–Weyl group,

D(α)D(β) = exp[1
2(αβ∗ − α∗β)]D(α + β). (2.11)

We get

ρ = 1

π

∫
d2λ χ1(λ)D(−λ)

∫
d2β PT (β) exp(β∗λ − βλ∗). (2.12)

From the Fourier inversion theorem of equation (2.5) applied in the second integral (2.12)
we arrive, by comparison with equation (2.2), at the CF of the superposition

χ(N )(λ) = χ
(N )

1 (λ)χ
(N )
T (λ), (2.13)

where

χ
(N )
T (λ) = exp(−n̄|λ|2) (2.14)

is the normally ordered CF for a thermal field. Therefore,

〈(a†)lam〉T = δlmn̄l l!. (2.15)

From equations (2.13) and (2.15) we get the correlation functions of the superposition

〈(a†)lam〉 =
min{l,m}∑

p=0

(
l

p

) (
m

p

)
p!n̄p〈(a†)l−pam−p〉1. (2.16)

Note that the diagonal casel = m in equation (2.16) was given in [20]. From equation (2.16)
we also infer, by settingl = 0, that thermal noise has no influence on the expectation values
of arbitrary powers of the field amplitude operators,

〈ak〉 = 〈ak〉1. (2.17)
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3. Thermal squeezed number state

In the following, we study the admixture of thermal noise with a field in a SNS. We recall
that SNS is a pure state obtained by the action of the squeeze operator,

S(ζ ) = exp{ 1
2[ζ(a†)2 − ζ ∗a2]} (3.1)

on a state with a definite number of photons,|M〉,
|M〉S = S(ζ )|M〉. (3.2)

In equation (2.14)ζ is the complex squeeze parameter,

ζ = r exp(iφ) (r > 0, −π < φ 6 π). (3.3)

The CF associated to an SNS,

χSN(λ) = 〈M|S†(ζ )D(λ)S(ζ )|M〉 (3.4)

is readily calculated by using the identity [21]

S†(ζ )D(λ)S(ζ ) = D(λ coshr − λ∗eiφ sinhr) (3.5)

and then the diagonal case of equation (2.8). We get

χSN(λ) = exp[− 1
2|ξ |2]L(0)

M (|ξ |2). (3.6)

In equation (3.6) we have denoted

ξ = λ coshr − λ∗ exp(iφ) sinhr (3.7)

while L
(0)
M is a Laguerre polynomial. According to equation (2.13), the superposition TSNS

has the normally ordered CF

χ
(N )
T SN(λ) = exp[−(n̄ − 1

2)|λ|2 − 1
2|ξ |2]L(0)

M (|ξ |2). (3.8)

3.1. Correlation functions

For the sake of simplicity, we prefer getting the correlation functions by direct differentiation
of equation (3.8) rather than using equation (2.16). Accordingly, we make use of the
differential operator

∂

∂λ
= coshr

∂

∂ξ
+ exp(−iφ) sinhr

(
− ∂

∂ξ ∗

)
(3.9)

and its conjugate. As the Laguerre polynomial is proportional to a confluent hypergeometric
function 1F1, equation (A3), we can use the Humbert’s relation (A5) to write simply

exp[− 1
2|ξ |2]L(0)

M (|ξ |2) =
∞∑

k=0

1

k!
(−ξξ ∗)k 2F1(−k, −M; 1; 2). (3.10)

Due to the special form of the right-hand side of equation (3.10), the derivatives of
equation (3.8) with respect toλ andλ∗ can be performed to any order via equation (3.9).
After some algebra we are able to get the expressions

〈(a†)lam〉T SN = exp[−i(l − m)φ/2]( 1
2)(l+m)/2 l!m!

(|l − m|/2)!
(tanhr)|l−m|/2(coshr)l+m

×
∑
p

1

p![(l + m − |l − m|)/2 − p]!

[
2n̄ − 1

(coshr)2

]p

× 2F1(− 1
2(l + m) + p, −M; 1; 2)
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×2F1(− 1
2(l + m) + p, − 1

2(l + m − |l − m|) + p; 1
2|l − m| + 1; (tanhr)2)

(l + m) even (3.11a)

〈(a†)lam〉T SN = 0 (l + m) odd. (3.11b)

For l = 0, equations (3.11) reduce, in agreement to equation (2.17), to the formula

〈am〉T SN =
 (m − 1)!![exp(iφ) sinhr coshr]m/2

2F1

(
−M, −m

2
; 1; 2

)
m even

0 m odd

(3.12)

which is characteristic for a SNS [12]. In the diagonal case, equations (3.11) give the
factorial moments of the photon number distribution,

〈(a†)lal〉T SN = (n̄ − 12)l l!
l∑

p=0

(
l

p

)
(coshr)2p(2n̄ − 1)−p

2F1(−M, −p; 1; 2)

× 2F1(−p, −p; 1; (tanhr)2). (3.13)

Notice the important particular casesl = 1 andl = 2 in equation (3.13):

〈a†a〉T SN = n̄ + M + (2M + 1)(sinhr)2 (3.14)

and

〈(a†)2a2〉T SN = 2n̄(n̄ + 2M) + M(M − 1) + [6M2 + 2M + 1 + 4n̄(2M + 1)](sinhr)2

+3(2M2 + 2M + 1)(sinhr)4. (3.15)

We evaluate now the second-order degree of coherence

g
(2)
T SN(0) ≡ 〈(a†)2a2〉

〈a†a〉2
= 1 + 1

{〈(a†a〉T SN }2

×{−M(1 − 2n̄) + n̄2 + [2n̄(2M + 1) + 2M2 + 1](sinhr)2

+2(M2 + M + 1)(sinhr)4}. (3.16)

For weak squeezing andM > 0, a sub-Poissonian statistics is found in the absence of
thermal noise [12]. From equation (3.16), we see that in the case of a TSNS, the statistics
cannot be sub-Poissonian forn̄ > 1

2. Therefore,a thermal mean occupancy equal to1
2 is

sufficient to destroy the antibunching effect of an SNS.

3.2. Density matrix

It is instructive to present now the density matrix of a TSNS in the Fock basis. The density
matrix of a SNS was written compactly by one of us in [12] by means of the matrix
elements of the squeeze operator. We found that only even–even and odd–odd〈n|S(ζ )|p〉
are non-vanishing. Explicitly, for evenn andp we have [12]

〈n|S(ζ )|p〉 = (−1)p/2[n!p!] 1/2(
n
2

)
!
(

p

2

)
!

exp

[
i
(n − p)

2
φ

] (
1

2
tanhr

)(n+p)/2

× 2F1

(
−n

2
, −p

2
; 1

2
; − 1

(sinhr)2

)
. (3.17)
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We focus only on evenM, the situation being quite similar in the case of oddM. By
introducing the matrix element (3.17) in the general formula (2.10) we get

〈m|ρ|n〉 =
(

m!

n!

)1/2 1

(m − n)!

M!

[(M
2 )!] 2

exp

[
i
(m − n)

2
φ

]
n̄n

(n̄ + 1)m

1

coshr

[
1

2
tanhr

] (m−n)

2 +M

×
∞∑

p=0

(m − n + 2p)!

p![(m − n)/2 + p]!

(
n̄

n̄ + 1

1

2
tanhr

)2p

× 2F1

(
−2p, −n; m − n + 1; 1

n̄2

)
2

F1

(
−p, −M

2
; 1

2
; − 1

(sinhr)2

)
× 2F1

(
−m − n

2
− p, −M

2
; 1

2
; − 1

(sinhr)2

)
(m − n) even (3.18a)

〈m|ρ|n〉 = 0 (m − n) odd. (3.18b)

Figures 1 and 2 illustrate the photon number distribution (casem = n in equation (3.18a)).
We have taken several values of the thermal mean occupancy lied between 0 and 1. In
figure 1,M = 2 and the squeeze parameter isr = 3, while in figure 2 we have usedM = 4
andr = 1. Obviously, the oscillatory behaviour is smoothed out by thermal noise.

4. Higher-order squeezing

In [12] one of us calculated in a simple form the conditions for both conventional and
intrinsic arbitrary order squeezing for a SNS. Our aim now is to find similar analytical
expressions in the case of a TSNS. We recall that, according to Hong and Mandel [13], a
quantum state possessesN th-order squeezing if

〈(1Xj)
N 〉 < 2−N(N − 1)!! N even (4.1a)

and intrinsic higher-order squeezing if the normally ordered moments are negative,

〈: (1Xj)
N :〉 < 0 N even. (4.1b)

In equation (4.1),1Xj = Xj − 〈Xj 〉 andXj is one of the quadrature operators defined as

X1 = 1
2(a + a†) X2 = 1

2i
(a − a†) (4.2)

and satisfying the commutation relation

[X1, X2] = i

2
I. (4.3)

On account of equation (3.12), the higher-order squeezing condition (4.1a) reads

〈(a + a†)N 〉 < (N − 1)!! N even. (4.4)

In order to calculate the left-hand side of this inequality one may use a normal-ordering
formula given as equation (10.43) in the work [22] of Wilcox,

〈(a + a†)N 〉 =
[N/2]∑
k=0

N−2k∑
s=0

(
1

2

)k
N !〈(a†)saN−2k−s〉
k!s!(N − 2k − s)!

. (4.5)

Taking advantage of deriving in section 3 the correlation functions (3.11), we are able to
write equation (4.5) as a finite triple summation which contains also a product of two Gauss
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Figure 1. Photon number distribution for a TSNS with parametersM = 2 and r = 3. The
values of the thermal mean occupancy are: (a) n̄ = 0, (b) n̄ = 0.01 and (c) n̄ = 0.1.

hypergeometric functions:

〈(X1)
N 〉T SN = N !( 1

2)N/2
N/2∑
k=0

N−2k∑
s=0

exp[−i(N − 2k − 2s)φ/2]
1

k!(N/2 − k − s)!

×(tanhr)(N−2k−2s)/2(coshr)N−2k
s∑

p=0

(2n̄ − 1)p

p!(s − p)!
(coshr)−2p

× 2F1

(
−N

2
+ k + p, −M; 1; 2

)
× 2F1

(
−N

2
+ k + p, −s + p; N

2
− k − s + 1; (tanhr)2

)
. (4.6)
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Figure 2. Photon number distribution for a TSNS with parametersM = 4 and r = 1. The
values of the thermal mean occupancy are: (a) n̄ = 0, (b) n̄ = 0.05 and (c) n̄ = 1.

In the appendix, we show how this summation can be performed analytically to arrive at
the remarkably simple formula

〈(X1)
N 〉T SN = 2−N(N − 1)!![ |α|2 + 2n̄]N/2

2F1

(
−M, −N

2
; 1; 2|α|2

|α|2 + 2n̄

)
(4.7)

where the parameter

α = coshr + eiφ sinhr (4.8)

was introduced in [12]. When specializinḡn = 0 in equation (4.7), we retrieve the result
(26) from [12].
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Using McCoy’s theorem written in [22] as equation (5.6), we get the normally ordered
moments as

〈: (1X1)
N :〉 = N !

N/2∑
l=0

(−1)l〈(1X1)
N−2l〉

l!(N − 2l)!23l
. (4.9)

After introducing in equation (4.9) the preceding result (4.7), we obtain a sum involving
Gauss hypergeometric polynomials, which is of the type (A6). Actually, the normally
ordered moments are

〈: (1X1)
N :〉T SN = 2−N(N − 1)!!(|α|2 + 2n̄ − 1)N/2

2F1

(
−M, −N

2
; 1; 2|α|2

|α|2 + 2n̄ − 1

)
.

(4.10)

From equation (4.10) we learn that the condition for intrinsic squeezing cannot be fulfilled if
|α|2+2n̄−1, and therefore the Gauss function2F1 are positive. Forφ = π , |α|2 = exp(−2r)

so that we find the conditions necessary for the existence of intrinsic squeezing,

n̄ < 1
2 and r > rs = − 1

2 ln(1 − 2n̄). (4.11)

We also examine the strong squeezing limitr → ∞ in equations (4.7) and (4.10):

lim
r→∞〈(1X1)

N 〉T SN = 2−N(N − 1)!!(2n̄)
N
2 (4.12)

lim
r→∞〈: (1X1)

N :〉T SN = (−1)
N
2 2−N(N − 1)!!(1 − 2n̄)

N
2 . (4.13)

In this case, which is the most favourable to the existence of non-classical properties,
equation (4.12) exhibits squeezing if and only ifn̄ < 1

2. Therefore, for strong squeezing
this inequality is a necessary andsufficientcondition for squeezing. In addition, according
to equation (4.13), a TSNS is intrinsically squeezed forn̄ < 1

2 only if N/2 is odd.
We stress now that the remarkable features of squeezing properties in the case of

a SNS, as were found in [12], still survive in the presence of thermal noise if the
conditions (4.11) are satisfied. Indeed, as shown in figures 3 and 4, the normally ordered
moments〈: (1X1)

N :〉T SN are oscillatory functions with respect to the squeeze parameter,
but the oscillations are smoothed out when thermal mean occupancy goes towards the
threshold value1

2. In figure 3 the dependence onr of fourth-order moments are given
when n̄ grows from 0.01 (figure 3(a)) to 0.45 (figure 3(d)). Figure 4 presents the
same dependence, but forN = 10. At the same time, we point out that squeezing to
different orders sets in at different values of the squeeze parameterr

(N)
min > rs , which

are dependent on the thermal mean occupancy. In tables 1 and 2 we present the onset
values of the squeeze parameter for differentM and several values of̄n. In table 1,
we give results for second-order squeezing, while in table 2 fourth-order squeezing is
investigated.

A foregone conclusion to the above discussion is that other forms of higher-order
squeezing could be influenced by thermal noise. We think at the amplitude-squared
squeezing, a concept introduced by Hillery [14] in terms of the operators,

Y1 = 1
2(a2 + (a†)2) and Y2 = 1

2i
(a2 − (a†)2) (4.14)

which correspond to the real and imaginary parts of the square of the field mode amplitude.
The condition for squeezing in theY1 operator,

〈(1Y1)
2 >〉 < 〈a†a〉 + 1

2 (4.15)
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Figure 3. Normally ordered moment of fourth order for the quadratureX1 in the caseM = 5
versus the squeeze parameter for several values of thermal mean occupancy: (a) n̄ = 0.01, (b)
n̄ = 0.05, (c) n̄ = 0.10 and (d) n̄ = 0.45.

Figure 4. As in figure 1, but for the orderN = 10.

originates in the commutation relation

[Y1, Y2] = i(2a†a + I ). (4.16)

The squeezing defined by equation (4.15) involves fourth-order powers of the amplitude
operators. Explicitly,

〈(1Y1)
2〉 = 〈a†a〉 + 1

2 + 1
4[〈(1(a†)2)2〉 + 〈(1a2)2〉] + 1

2[〈(a†)2a2〉 − 〈(a†)2〉〈a2〉]. (4.17)
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Table 1. Onset values of the squeeze parameter for second-order squeezing of TSNS’s with
different M and n̄.

M

n̄ 1 2 5 10

0 0.549 0.805 1.199 1.522
0.01 0.559 0.815 1.209 1.533
0.05 0.601 0.857 1.251 1.574
0.10 0.660 0.916 1.310 1.633
0.45 1.700 1.956 2.350 2.673

Table 2. As in table 1 but for fourth-order squeezing.

M

n̄ 1 2 5 10

0 0.402 0.641 1.027 1.349
0.01 0.416 0.655 1.042 1.363
0.05 0.472 0.713 1.101 1.423
0.10 0.547 0.791 1.179 1.502
0.45 1.689 1.943 2.337 2.661

By inserting equations (3.12) and (3.15) for a TSNS we obtain

〈(1Y1)
2〉T SN − 〈a†a〉T SN − 1

2 = 1
2M(M − 1) + n̄(n̄ + 2M)

+[M(M − 1) + 2n̄(2M + 1) + (M2 + M + 1) cos(2φ)](sinhr)2

+(M2 + M + 1)(1 + cos(2φ))(sinhr)4. (4.18)

The condition (4.15) could be satisfied only if cos(2φ) < 0. The maximum squeezing is
reached forφ = π/2, when

〈(1Y1)
2〉T SN − 〈a†a〉T SN − 1

2 = 1
2M(M − 1) + n̄(n̄ + 2M) + (2n̄ − 1)(2M + 1)(sinhr)2.

(4.19)

The right-hand side of equation (4.19) could be negative only ifn̄ < 1
2.

Now, we are in a position to draw the final conclusion of our analysis:the valuen̄ = 1
2

of the thermal mean occupancy is sufficient to destroy usual squeezing to any order and also
amplitude-squared squeezing.

5. Summary

In this paper we have analysed the preservation of some non-classical properties of a SNS
field when superposed on a thermal field. We have found that the conditions for both
conventional and intrinsic higher-order squeezing, as introduced by Hong and Mandel, are
expressed by formulae similar to those describing the pure field in a SNS. However, the
squeezing properties are altered by admixture with thermal noise and disappear completely
for values of thermal mean occupancy exceeding the threshold1

2. Also destroyed are the
sub-Poissonian character of the photon statistics and the well known pairwise oscillations in
the photon number distribution. Finally, we have verified that this threshold has the same
significance in the case of amplitude-squared squeezing of an SNS.
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Appendix. Moments of the quadrature operators

We recall first some basic formulae involving Gauss hypergeometric functions. Thus, the
series expansion of a Gauss function is [23]

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
|z| < 1 (A1)

where(a)n ≡ 0(a + n)/0(a) is Pochhammer’s symbol. Notice also the series expansion
of the confluent hypergeometric function (Kummer’s function)

1F1(a; c; z) =
∞∑

n=0

(a)n

(c)n

zn

n!
. (A2)

We have employed in section 2 the relation between a Laguerre polynomial and a confluent
hypergeometric function,

L
(µ)

l (x) = (µ + 1)l

l!
1F1(−l; µ + 1; x) (A3)

in order to take advantage of the well known integral [23]∫ ∞

0
dt exp(−st)tc−1

1F1(a; c; σ t) 1F1(a
′; c; σ ′t) = 0(c)sa+a′−c(s − σ)−a(s − σ ′)−a′

× 2F1[a, a′; c; σσ ′(s − σ)−1(s − σ ′)−1]. (A4)

In the body of the paper we have exploited Humbert’s summation formula ([24] p 6,
equation (2)),

exp(−xz) 1F1(a; c; z) =
∞∑

n=0

(−xz)n

n!
2F1

(
−n, a; c; 1

x

)
. (A5)

In the following we mention a useful power series involving Gauss hypergeometric
polynomials (see [23] section 2.5.1)

∞∑
n=0

(−σ)n

n!
(t)n 2F1(−n, b; c; z) = (1 − t)σ 2F1

(
−σ, b; c; tz

t − 1

)
. (A6)

and its special caseσ = −c,
∞∑

n=0

(c)n

n!
tn 2F1(−n, b; c; z) = (1 − t)b−c(1 − t + tz)−b. (A7)

Now, the way is paved for deriving equation (4.7). By inverting the order of the second
and third summations in equation (4.6) we arrive at

〈(X1)
N 〉T SN = N !

(
1

2

)N/2 N/2∑
k=0

N−2k∑
p=0

1

k!p!
(coshr)N−2k−2p(2n̄ − 1)p

× 2F1

(
−N

2
+ k + p, −M; 1; 2

)
S1(k, p). (A8)

In equation (A8) we have separated the sum

S1(k, p) =
N−2k−2p∑

q=0

exp[−i(N − 2k − 2p − 2q)φ/2]

q!(N
2 − k − p − q)!

(tanhr)
N
2 −k−p−q

× 2F1

(
−N

2
+ k + p, −q; N

2
− k − p − q + 1; (tanhr)2

)
. (A9)
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The summation in equation (A9) can be performed with equation (A7), after using the
connection between the hypergeometric functions of argumentsz and 1−z. ([23] section 2.9,
equation (33)). We obtain

S1(k, p) = 1

(N/2 − k − p)!

[
sinh(2r) cosφ + cosh(2r)

(coshr)2

] N
2 −k−p

. (A10)

We insert the result (A10) in equation (A8) and perform the two remaining summations
by repeated use of equation (A6). A little algebra leads us to the simple and compact
result (4.7).
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